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Learning objectives

1. Be able to describe what bootstrapping and
permutation tests do, and how they work

2. Be able to perform bootstrapping and
permutation in R
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Today’s outline

1.  Computational statistics
2. Bootstrapping and permutation
3. Practice in R
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Introduction to computational statistics

Where we’ve been, where we’re going

We have so far focused on simulations in
biology, exploring their structure and
functionality, with an emphasis on stochastic
simulations

2. For the rest of the course, we will consider the
use of computers in biological analysis,
including:
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We have so far focused on simulations in
biology, exploring their structure and
functionality, with an emphasis on stochastic

simulations

For the rest of the course, we will consider the
use of computers in biological analysis,

including:

a.
b. Bioinformatics (genomic data analysis)
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Computational statistics
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What 1s computational statistics?

Computational statistics is the field that combines statistics and computer
science to transform data into knowledge through computationally intensive
algorithms, or when big data are involved.

> Resampling methods
> Permutation/randomization methods
> Numerical optimization
> Markov chain Monte Carlo
> Neural networks and machine learning
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Opening discussion

How do computers help with data analysis? Do computers simply make hard
things easier (i.e., perform calculations that could be done by hand), or do they
let one do things that would otherwise be impossible, or at least nearly
impossible? You have 4—5 minutes to discuss these questions. Summarize your
groups thoughts on the provided index card.
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Bootstrapping

Bootstrapping is a statistical procedure that re-samples a single
dataset to create many simulated samples. This process allows for
the calculation of standard errors, confidence intervals, and
hypothesis testing.
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Standard error (SE): traditional approach

Sampling distribution = theoretical set of all possible estimates,

approximately normal
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Standard error (SE): traditional approach

Re-sample the sample to approximate the theoretical sampling
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Standard error (SE): traditional approach

Re-sample the sample to approximate the theoretical sampling
Distribution
1. Standard errors on an estimate = standard deviation of the bootstrap
estimates
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Standard error (SE): traditional approach

Re-sample the sample to approximate the theoretical sampling
Distribution
1. Standard errors on an estimate = standard deviation of the bootstrap
estimates
2. Confidence intervals on an estimate = empirical quantiles of the
distribution of bootstrap sample estimates
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Standard error (SE): traditional approach

Re-sample the sample to approximate the theoretical sampling

Distribution

1. Standard errors on an estimate = standard deviation of the bootstrap
estimates

2. Confidence intervals on an estimate = empirical quantiles of the
distribution of bootstrap sample estimates

3. Null hypothesis tests = you can reject a null value for a parameter with
some level of confidence if it is not included in the relevant
confidence interval
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Introduction to computational statistics

Bootstrapping null hypothesis example
This R function takes a vector of data, a confidence level, and null value and returns
whether the null value falls within the bootstrap confidence interval.
bootTest<-function (X=NA, conf=.95,nullval=0) {

est<-rep (NA,1000)

for(i in 1:1000) {
est[i]<-mean (sample (X, length (X), replace=TRUE))

}
lb<-quantile (est,probs=(l-conf) /2)
ub<-quantile (est,1l-(l-conf) /2)
if (nullval >= 1lb & nullVal <= ub) {
return ("Fail to reject")
} else{ return("Reject")}

}
USU Department of Biology
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Permutation tests

A permutation test or randomization test determines whether apparent patterns
in data could arise by chance. The general algorithm is:

1. Compute a test statistic on the data, e.g., difference in means, correlation,
ete.

2. Repeatedly randomize (permute) the labels (treatments) or covariates and
recalculate the statistic

3. Use this null distribution to determine (with some level of confidence)
whether the observed data can be explained by chance under the null
hypothesis
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Permutation tests
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Permuting treatment labels (A vs. B) generates a null distribution for
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R code for bootstrapping and permutations

See the handout for this week
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